Integrated management of **Aphanomyces and Fusarium root rot** in field peas: (4) Optimizing planting date

Michael Wunsch, Suanne Kallis, Jesse Hafner, Aaron Fauss NDSU Carrington Res. Ext. Center in collaboration with Edson Ncube and Audrey Kalil, NDSU Williston Research Extension Center

Research funded by:

Northern Pulse Growers Association

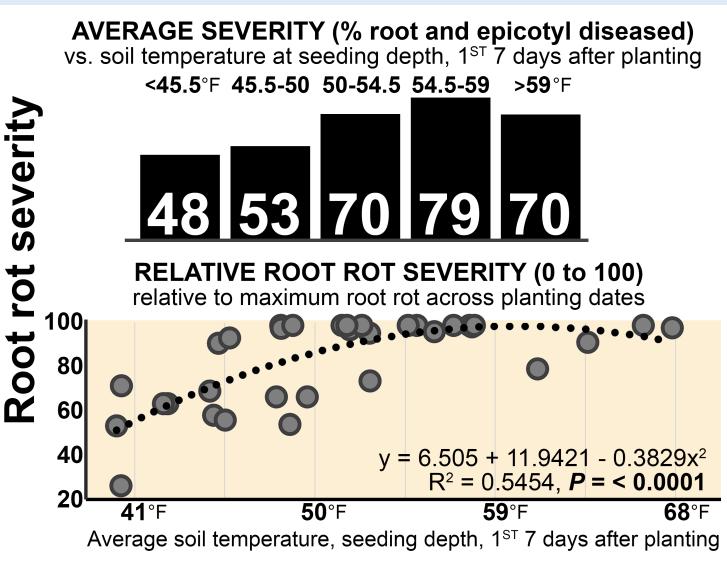
North Dakota Department of Agriculture Pesticide Harmonization and Registration Board

USDA Specialty Crop Block Grant Program administered by the

North Dakota Department of Agriculture

Response to planting date in fields with elevated native root rot pressure

Fields with elevated Aphanomyces and Fusarium root rot caused by a long history of field pea and lentil production. Williams, Mountrail and McLean Counties, ND (2019, 2020); Carrington, ND (2017-2020) Long-term no-till at Williams, Mountrail and McLean County on-farm sites. Direct-seeded or conventional till in Carrington.


Root rot was minimized when soil temperature was < 50°F (7 days after planting at 2" seeding depth).

Presented are average results for field peas grown without fungicide seed treatment or with various different seed treatments.

Seeding rate = 330,000 viable seeds/ac.

Diagnostic testing conducted on symptomatic diseased roots (genotype by sequencing, qPCR, traditional microbiology): *Aphanomyces euteiches* and multiple *Fusarium* species detected in each of the field studies

Soil temperature was recorded by installing data-logging soil temperature sensors at seeding depth that recorded soil temperature every 2 hours.

Response to planting date in fields with elevated native root rot pressure

Fields with elevated Aphanomyces and Fusarium root rot caused by a long history of field pea and lentil production. Williams, Mountrail and McLean Counties, ND (2019, 2020); Carrington, ND (2017-2020) Long-term no-till at Williams, Mountrail and McLean County on-farm sites. Direct-seeded or conventional till in Carrington.

Yield optimized when soil temperature was 45.5-50°F (7 days after planting at 2" seeding depth).

yield

σ

Ð

Φ

Presented are average results for field peas grown without fungicide seed treatment or with various different seed treatments.

Seeding rate = 330,000 viable seeds/ac.

Diagnostic testing conducted on symptomatic diseased roots (genotype by sequencing, qPCR, traditional microbiology): *Aphanomyces euteiches* and multiple *Fusarium* species detected in each of the field studies

Soil temperature was recorded by installing data-logging soil temperature sensors at seeding depth that recorded soil temperature every 2 hours.

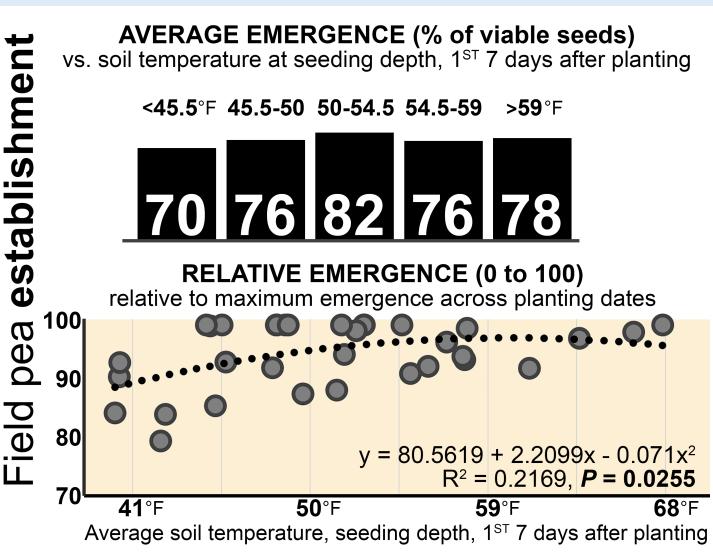
AVERAGE YIELD (bushels/acre)

vs. soil temperature at seeding depth, 1st 7 days after planting

Average soil temperature, seeding depth, 1ST 7 days after planting

Response to planting date in fields with elevated native root rot pressure

Fields with elevated Aphanomyces and Fusarium root rot caused by a long history of field pea and lentil production. Williams, Mountrail and McLean Counties, ND (2019, 2020); Carrington, ND (2017-2020) Long-term no-till at Williams, Mountrail and McLean County on-farm sites. Direct-seeded or conventional till in Carrington.


Emergence often suffered in cold soils, especially <43°F (7 days after planting at 2" seeding depth).

Presented are average results for field peas grown without fungicide seed treatment or with various different seed treatments.

Seeding rate = 330,000 viable seeds/ac.

Diagnostic testing conducted on symptomatic diseased roots (genotype by sequencing, qPCR, traditional microbiology): *Aphanomyces euteiches* and multiple *Fusarium* species detected in each of the field studies

Soil temperature was recorded by installing data-logging soil temperature sensors at seeding depth that recorded soil temperature every 2 hours.

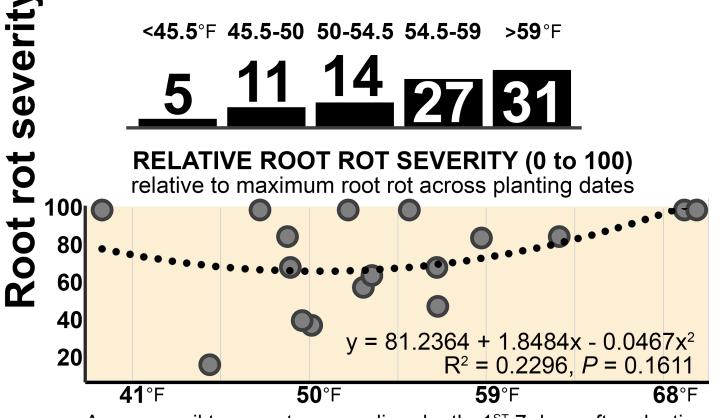
In fields with Aphanomyces and Fusarium root rot pressure, field pea agronomic performance was optimized by planting when soils were approximately **43 to 50°F at 2-inch seeding depth**, average day and night across the first 7 days after planting.

- Consistent results relative to soil temperature were observed irrespective of tillage system (long-term no-till versus conventional tillage). Because long-term no-till warms up more slowly, no-till production should facilitate a wider window of time to plant at this target soil temperature.
- There is a penalty to planting too early. Planting peas at soils that averaged 39 to 41°F reduced yield potential.
- There is a penalty to planting too late. Aphanomyces and Fusarium are pathogens favored by warm soils. Planting into cool soils gives the peas an opportunity to get established before conditions become highly favorable for the pathogens.
- Planting into cool soils increases the risk of losses to Pythium and Rhizoctonia. Fungicide seed treatments are effective tools for managing these pathogens.
- This soil temperature can be targeted on the basis of your current soil temperature at seeding depth (average, day and night) and the 10-day forecast.

Response to planting date in studies inoculated with Fusarium

Fields conducted in fields that do not have a long history of field pea and/or lentil production and that do not have problems with Aphanomyces or Fusarium root rot.

Long-term no-till production: Williston, ND (2018, 2019) Direct-seeded or conventional tillage: Carrington, ND (2017-2019)


Root rot was minimized when soil temperature was < 54.5°F (7 days after planting at 2" seeding depth).

Presented are average results for field peas grown without fungicide seed treatment or with various different seed treatments.

Seeding rate = 330,000 viable seeds/ac.

Field peas were planted in fields without an existing Aphanomyces or Fusarium root rot problem. Eight isolates of *Fusarium* spp. pathogenic to peas, including *F. avenaceum*, *F. solani*, were grown on soaked, autoclaved millet, dried, and then placed in-furrow with the field pea seed at planting.

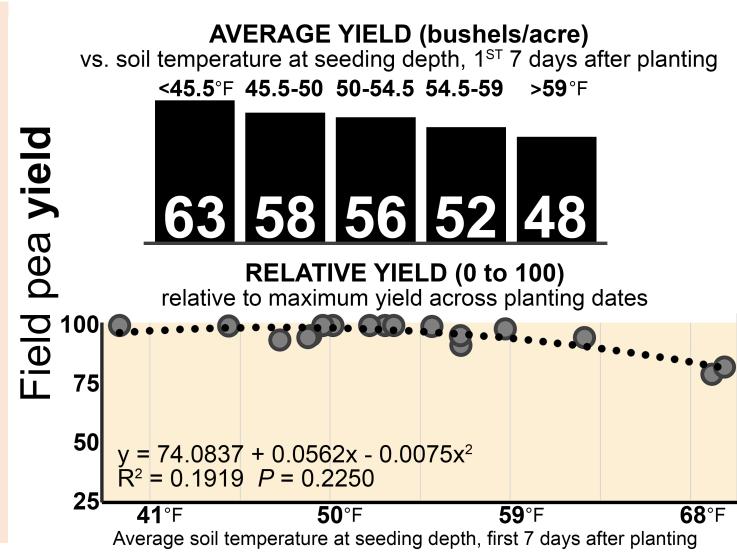
AVERAGE SEVERITY (% root and epicotyl diseased) vs. soil temperature at seeding depth, 1st 7 days after planting

Average soil temperature, seeding depth, 1st 7 days after planting

Fusarium root rot of field peas: Impact of planting date

Response to planting date in studies inoculated with Fusarium

Fields conducted in fields that do not have a long history of field pea and/or lentil production and that do not have problems with Aphanomyces or Fusarium root rot.


Long-term no-till production: Williston, ND (2018, 2019) Direct-seeded or conventional tillage: Carrington, ND (2017-2019)

Yield optimized when soil temperature was <45.5°F (7 days after planting at 2" seeding depth).

Presented are average results for field peas grown without fungicide seed treatment or with various different seed treatments.

Seeding rate = 330,000 viable seeds/ac.

Field peas were planted in fields without an existing Aphanomyces or Fusarium root rot problem. Eight isolates of *Fusarium* spp. pathogenic to peas, including *F. avenaceum*, *F. solani*, were grown on soaked, autoclaved millet, dried, and then placed in-furrow with the field pea seed at planting.

Response to planting date in studies inoculated with Fusarium

Fields conducted in fields that do not have a long history of field pea and/or lentil production and that do not have problems with Aphanomyces or Fusarium root rot.

Long-term no-till production: Williston, ND (2018, 2019) Direct-seeded or conventional tillage: Carrington, ND (2017-2019)

Establishment **AVERAGE EMERGENCE (% of viable seeds)** was only slightly vs. soil temperature at seeding depth, 1ST 7 days after planting stablishme reduced in cold <45.5°F 45.5-50 50-54.5 54.5-59 >59°F soils (7 days after planting at 2" seeding depth). 86 86 91 97 95 Presented are average results for field peas grown without fungicide **RELATIVE EMERGENCE (0 to 100)** seed treatment or with relative to maximum emergence across planting dates Φ various different seed 100₁ •••• ••••• treatments. σ Ð Seeding rate = 330,000 viable seeds/ac. 90 Field peas were planted in fields <u>ed</u> without an existing Aphanomyces or Fusarium root rot problem. Eight 80 isolates of Fusarium spp. $y = 81.2364 + 1.8484x - 0.0467x^2$ pathogenic to peas, including F. $R^2 = 0.2296, P = 0.1611$ avenaceum, F. solani, were grown on soaked, autoclaved millet, dried, 70 and then placed in-furrow with the **41**°F **50°**F **59°**F 68°F field pea seed at planting. Average soil temperature, seeding depth, 1st 7 days after planting

Field peas inoculated with the Fusarium root rot pathogen and grown in **fields without a long history of growing peas or lentils** and without elevated native Aphanomyces or Fusarium pressure:

- Field pea agronomic performance was optimized by planting very early, 39 to 45°F at 2-inch seeding depth, average day and night across the first 7 days after planting.
- The number of studies conducted was limited and none of these studies experienced very cold weather in mid-April. When soil temperatures average around 40°F, it is early in the spring and a few days of very cold weather often occur. It would be well-advised to wait until soil temperatures warm to 43 to 50°F at 2-inch seeding depth, average first 7 days after planting.
- Consistent results relative to soil temperature were observed irrespective of tillage system (long-term no-till versus direct-seeded or conventional tillage).
- In fields without a long history of pea or lentil production, field pea establishment was excellent even in cool soils. This suggests that Pythium and Rhizoctonia pressure were relatively low. The yield gains conferred by fungicide seed treatment (data not shown) were low even with early planting, again suggesting that Pythium and Rhizoctonia were not significant constraints in fields that lacked a long history of pea or lentil production.

Aphanomyces and Fusarium root rot of field peas: Planting date studies conducted across fields differing in the interval since peas last grown Carrington, ND (2023, 2024)

Research methods:

Randomized studies with six replicates (randomized complete block with a split-split-plot arrangement, main factor = plant date, sub-factor = variety, sub-sub-factor = seed treatment)

Plots 5 ft x 30 ft at planting, 5 ft x approx. 20 ft at harvest.

Plots consist of 7 rows, each 7.5 inches apart

Seeding rate = 330,000 viable seeds/ac.

Tillage: mixture of direct seeding into previous year's crop (7 studies/year) and full conventional tillage (4 studies/year).

Data collection:

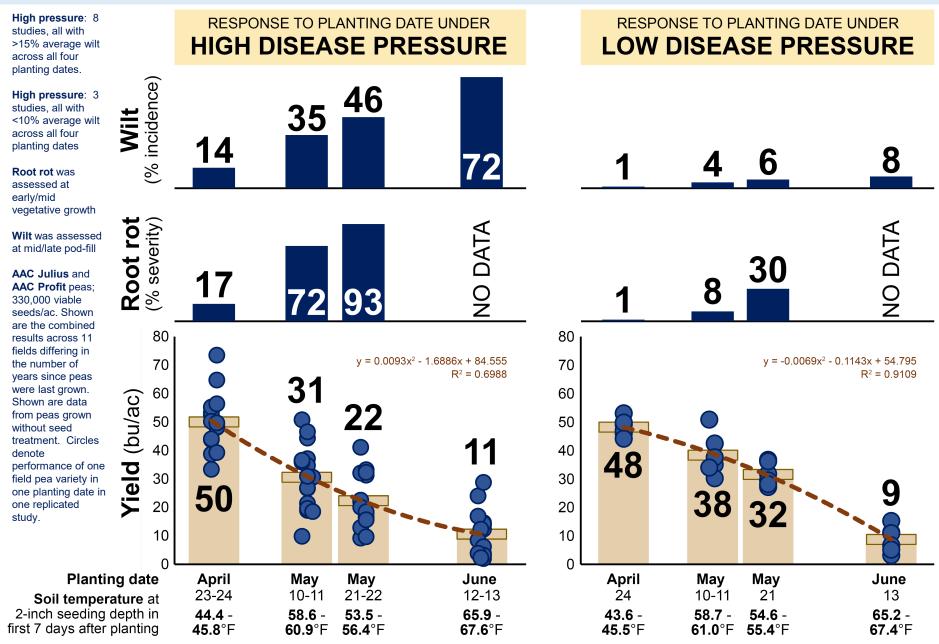
Root rot: assessed at early to mid vegetative growth (4-10 nodes). The percent of the epicotyl + top 2.5 cm of the tap root diseased; assessed on 16, 36, or 50 roots/plot, depending on study and planting date. Half of the roots were collected from each plot end outside of the area assessed for yield.

Wilt: assessed at mid to late pod-fill. A visual estimate of the percent of the plants exhibiting root rot associated wilt symptoms. This was always assessed at a consistent growth stage across field pea varieties within each planting date.

Within each study, every effort was made to assess root rot and wilt at a consistent growth stage across every planting date and every field pea variety.

Yield: moisture was assessed at harvest and yields are reported at a standard 13.5% moisture

Carrington, ND (2024): High Aphanomyces pressure; *Fusarium avenaceum* at moderate levels


	Studies with low disease severity						
	Field: Field Q9A	Field Q9F	Field Q9G	Average			
Last year seeded to	o peas: 2019	2016	2013	/ Woldgo			
Aphanomyces	euteiches (thousa	and DNA copie	es/gram of root)				
AAC Julius	66052	3	21	22026			
AAC Profit	42345	1	2	14116			
<i>Fusarium oxysporum</i> (thousand DNA copies/gram of root)							
AAC Julius	0	0	0	0			
AAC Profit	0	0	0	0			
<i>Fusarium avenaceum</i> (thousand DNA copies/gram of root)							
AAC Julius	314	1	0	105			
AAC Profit	127	0	0	42			

Carrington, ND (2024)

Diagnostic qPCR testing conducted by the National Agriculture Genotyping Center. Results represent the average across nine qPCR tests per study (bulked samples across replicates 1 and 2, replicates 3 and 4, and replicates 5 and 6 from each of three planting dates). For all fields except 18south and 17, testing was conducted only on non-fungicide treated seed and each of the 9 tests for each variety in each study represents a combined sample of two 1-cm long epicotyl segments, one collected from each of the two experimental replicates bulked within that planting date. For fields 18south and 17, each of the 9 tests for each variety in each study represents the combined sample of 10 1-cm long epicotyl segments, one collected collected from each fungicide seed treatment (non-treated versus four different fungicide seed treatment) and two replicates. The 1-cm long epicotyl segments were collected from a plant with root rot symptoms typical of that plot.

Studies with high disease severity									
Last year seeded to	Field: Field 17 peas: 2021 euteiches (thous	18 north 2020	Field 1 2020	Field Q9D 2020	Q9E west 2018	18 south 2015	Field Q9B 2015	Q9E east 2015	Average
AAC Julius	13456	23709	10868	62634	92513	19479	29061	25648	34671
AAC Profit	37538	23453	112343	83690	56400	66357	29709	35824	55664
<i>Fusarium oxysporum</i> (thousand DNA copies/gram of root)									
AAC Julius	0	0	0	0	0	0	0	0	0
AAC Profit	0	0	0	0	0	0	0	0	0
<i>Fusarium avenaceum</i> (thousand DNA copies/gram of root)									
AAC Julius	92	66	64	244	1119	267	127	96	259
AAC Profit	140	171	180	370	205	387	84	249	223

Carrington, ND (2024): four planting dates from late April to mid-June

Carrington, ND (2023): High Aphanomyces pressure; *Fusarium oxysporum* at low levels

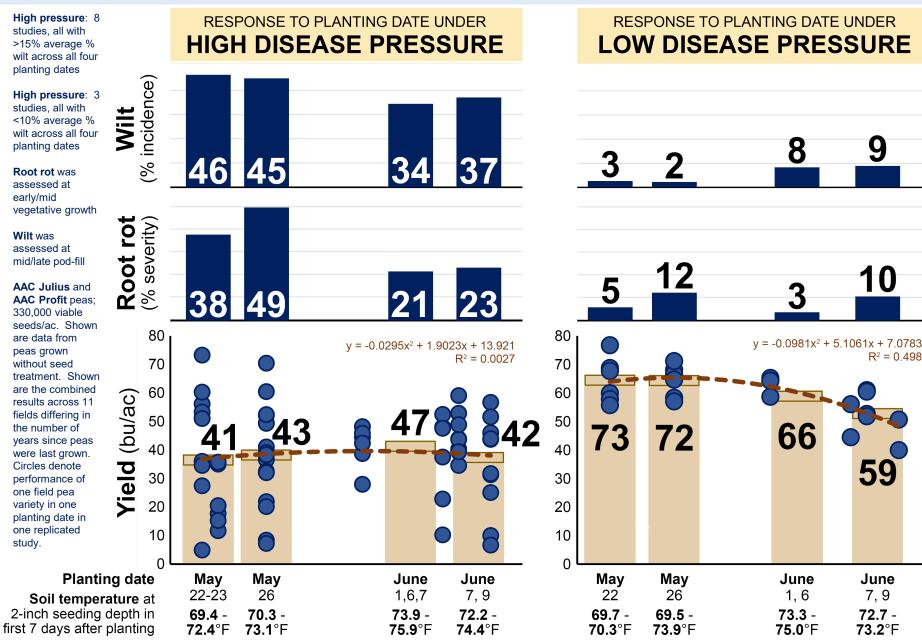
	Studi	Studies with low disease severity						
	Field: Field Q9A	Field Q9F	Field Q9G	Average				
Last year seeded t	o peas: 2019	2016	2013	Average				
Aphanomyces	euteiches (thouse	and DNA copie	es/gram of root)					
AAC Julius	319	0	0	106				
AAC Profit	47422	0	0	15807				
<i>Fusarium oxysporum</i> (thousand DNA copies/gram of root)								
AAC Julius	5.0	1.6	4.8	4				
AAC Profit	0	0	0	0				
<i>Fusarium avenaceum</i> (thousand DNA copies/gram of root)								
AAC Julius	0	0	0	0				
AAC Profit	0	0	0	0				

Carrington, ND (2023)

Diagnostic qPCR testing conducted by the National Agriculture Genotyping Center. Results represent the average across four qPCR tests per study (one per planting date). Each test represents a combined sample of six 1-cm long epicotyl segments, one collected from each of the six experimental replicates within each planting date. The 1-cm long epicotyl segments were collected from a plant with root rot symptoms typical of that plot. Testing was only conducted on plants grown from non-treated seed (no fungicide seed treatment).

Studies with high disease severity									
Last year seeded to	Field: Field Q9D peas: 2020 euteiches (thousa	F18 north 2020	Field 1 2020	F18 north 2019	Q9E west 2018	Field Q9B 2015	F18 south 2015	Q9E east 2015	Average
AAC Julius	38558	16818	154627	10670	17290	47830	25260	10616	40209
AAC Profit	40581	10563	120633	957	72670	37114	751	110068	49167
<i>Fusarium oxysporum</i> (thousand DNA copies/gram of root)									
AAC Julius	0	1.9	0	0	0	0	0	0	0.2
AAC Profit	0	0	0	0	0	0	0	0	0
<i>Fusarium avenaceum</i> (thousand DNA copies/gram of root)									
AAC Julius	0	0	0	0	0	0	0	0	0
AAC Profit	0	0	0	0	0	0	0	0	0

Carrington, ND (2023): wet spring precluded early planting; 4 plant dates, mid/late May to early June


High pressure: 8 studies, all with >15% average % wilt across all four planting dates

High pressure: 3 studies, all with <10% average % wilt across all four planting dates

Root rot was assessed at earlv/mid vegetative growth

Wilt was assessed at mid/late pod-fill

AAC Julius and AAC Profit peas; 330.000 viable seeds/ac. Shown are data from peas grown without seed treatment. Shown are the combined results across 11 fields differing in the number of years since peas were last grown. Circles denote performance of one field pea variety in one planting date in one replicated study.

Aphanomyces and Fusarium root rot of field peas: Planting date studies conducted across fields **differing** in the **interval since peas or lentils last grown** Williston, ND (2023, 2024)

Research methods:

Randomized studies with six replicates (randomized complete block with a split-split-plot arrangement, main factor = plant date, sub-factor = variety, sub-sub-factor = seed treatment) Plots 5 ft x 30 ft at planting, 5 ft x approx. 20 ft at harvest. Plots consist of 7 rows, each 7.5 inches apart Seeding rate = 330,000 viable seeds/ac. Tillage: long-term no-till

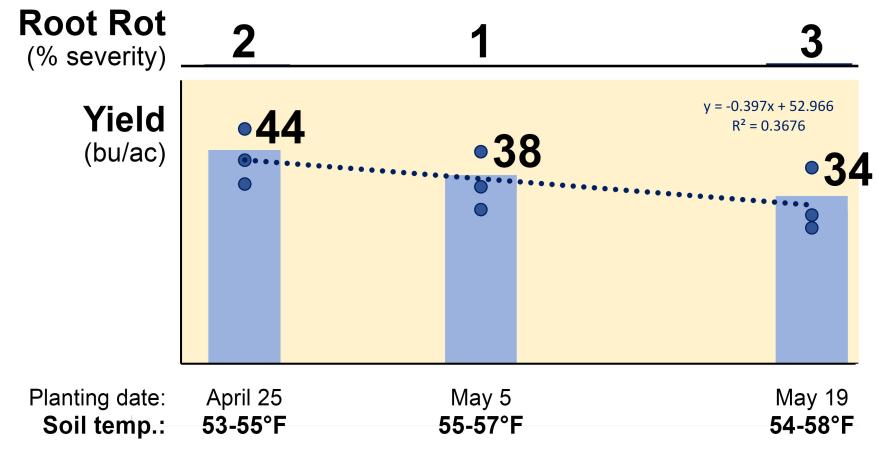
Data collection:

Root rot: assessed at early to mid vegetative growth (4-10 nodes). The percent of the epicotyl + top 2.5 cm of the tap root diseased; assessed on minimum 30 roots/plot. Half of the roots were collected from each plot end outside of the area assessed for yield.

Within each study, every effort was made to assess root rot at a consistent growth stage across every planting date and every field pea variety.

Yield: moisture was assessed at harvest and yields are reported at a standard 13.5% moisture

Williston, ND (2024): three planting dates, late April to mid-May Low Aphanomyces and Fusarium root rot pressure


Study number; last year seeded to pea/lentil:	497-24 2018	498-24 2022	499-24 2020	Average				
Fusarium oxysporum	<i>Fusarium oxysporum</i> (thousand DNA copies/gram of root)							
AAC Julius	42	29	51	41				
Fusarium avenaceum	<i>Fusarium avenaceum</i> (thousand DNA copies/gram of root)							
AAC Julius	0	61	35	32				
Fusarium acuminatur	n (thousand	d DNA copies/	gram of root)					
AAC Julius	0	6 59		22				
Fusarium redulens (thousand DNA copies/gram of root)								
AAC Julius	0	0	0	0				
<i>Fusarium solani</i> (thousand DNA copies/gram of root)								
AAC Julius	0	0	0	0				
Aphanomyces euteiches (thousand DNA copies/gram of root)								
AAC Julius	10	0	12	7				
Pythium spp. (thousand DNA copies/gram of root)								
AAC Julius	0	6	0	2				
Rhizoctonia solani (thousand DNA copies/gram of root)								
AAC Julius	18992	377	15	6461				

Williston, ND (2024)

Diagnostic qPCR testing conducted by the National Agriculture Genotyping Center. Results represent the average across three qPCR tests per study (one test per planting date, with each test conducted on a bulked sample of diseased epicotyl sections collected across all six replicates of the study). Testing was conducted only on nonfungicide treated seed. From each experimental replicate, a 1-cm long epicotyl segment was collected from a plant with root rot symptoms typical of that plot. The epicotyl segments were bulked across the six experimental replicates.

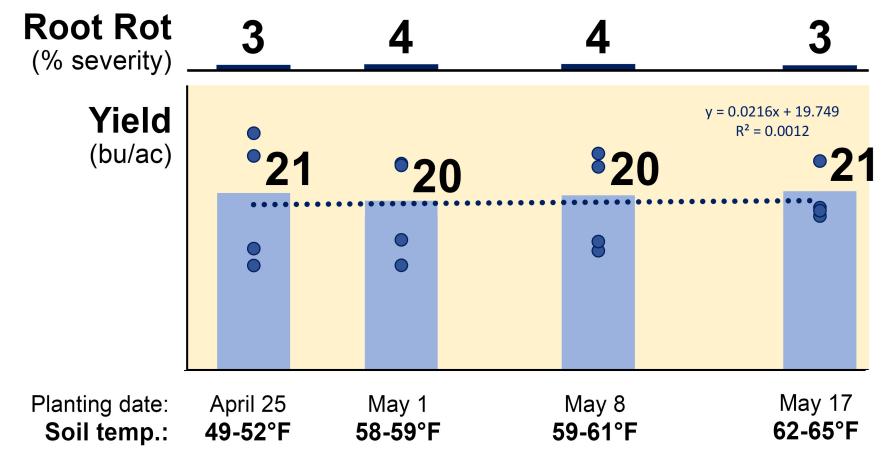
For each of the three planting dates conducted in each study, a single sample consisting of six epicotyl segments was tested by qPCR.

Williston, ND (2024): three planting dates, late April to mid-May Fields with low root rot pressure: penalty to delayed planting low

Soil temperature (average, day and night) at 2-inch seeding depth, first 7 days after planting.

'AAC Julius' yellow field pea. Seeding rate = 330,000 viable seeds/ac. The data presented are from peas grown without a seed treatment.

Shown is the combined analysis across three studies differing in the number of years since peas or lentils were last grown. Circles denote results from one planting date in one study. All studies were conducted on fields under long-term no-till management.


Williston, ND (2023): Four planting dates, late April to mid-May Low Aphanomyces and Fusarium pressure

Study number; last year seeded to pea/lentil:	487-23 2018	489-23 2020	Average					
Aphanomyces euteic	Aphanomyces euteiches (thousand DNA copies/gram of root)							
AAC Julius	0	0	0					
AAC Profit	0	0	0					
Fusarium oxysporum (thousand DNA copies/gram of root)								
AAC Julius	0	1041	521					
AAC Profit	0	1348	674					
Fusarium avenaceum (thousand DNA copies/gram of root)								
AAC Julius	0	0	0					
AAC Profit	0	0	0					

Williston, ND (2023)

Diagnostic qPCR testing conducted by the National Agriculture Genotyping Center. Results represent the average across four qPCR tests per field pea variety per study (one test per variety per planting date, with each test conducted on a bulked sample of diseased epicotyl sections collected across all six replicates of the study). Testing was conducted only on nonfungicide treated seed. From each field pea variety and each experimental replicate, a 1-cm long epicotyl segment was collected from a plant with root rot symptoms typical of that plot. The epicotyl segments were bulked across the six experimental replicates.

Williston, ND (2023): Four planting dates, late April to mid-May Fields with low root rot pressure: no penalty to delayed planting in 2023

Soil temperature (average, day and night) at 2-inch seeding depth, first 7 days after planting.

'AAC Julius' and 'AAC Profit' yellow field peas, seeding rate = 330,000 viable seeds/ac. The data presented are from peas grown without a seed treatment.

Shown is the combined analysis across three studies differing in the number of years since peas or lentils were last grown. Circles denote results from an individual study. All studies were conducted on fields under long-term no-till management.

Across fields with a long history of field pea and/or lentil production and differing in number of years since peas or lentils were last grown,

- Field pea agronomic performance was optimized in fields with elevated Aphanomyces and Fusarium root rot pressure by planting when soils were approximately 43 to 50°F at 2-inch seeding depth, average day and night across the first 7 days after planting.
- Where root rot pressure was low, the yield penalty to late planting was lower. The yield penalty associated with late planting increases with Aphanomyces and Fusarium root rot pressure.
- When early planting is not possible, weather conditions later in the season influence the degree of penalty associated with late versus very late planting.

Overall conclusions:

- In fields with Aphanomyces and Fusarium root rot pressure, field pea agronomic performance is optimized by planting when soils are approximately 43 to 50°F at 2inch seeding depth, average day and night across the first 7 days after planting.
- This soil temperature can be targeted on the basis of your current soil temperature at seeding depth (average, day and night) and the 10-day forecast.
- **Fungicide seed treatment is advised** when planting field peas early in fields with a long history of peas and/or lentils. Pythium and Rhizoctonia pressure appears to increase with repeated cropping of peas and lentils, and fungicide seed treatment has provided strong yield gains in fields with a long pea and/or lentil history.
- The penalty to late planting is lower in fields with low Aphanomyces and Fusarium pressure.
- Planting too early reduces field pea yield potential. Planting should be delayed until soil temperatures are expected to average 43 to 50°F at 2-inch seeding depth, average day and night across the first 7 days after planting.

Integrated management of Aphanomyces and Fusarium root rot in field peas

Michael Wunsch, Suanne Kallis, Jesse Hafner, Aaron Fauss NDSU Carrington Res. Ext. Center in collaboration with Edson Ncube and Audrey Kalil, NDSU Williston Research Extension Center

Research funded by:

Northern Pulse Growers Association

North Dakota Department of Agriculture Pesticide Harmonization and Registration Board

USDA Specialty Crop Block Grant Program administered by the

North Dakota Department of Agriculture