

Upcoming Webinars

- March 19 Pickling Safety
 Cindy Brison, University of Nebraska Extension educator
- March 26 Tips and Tricks for Vegetable
 Production
 Susle Thompson, NDSU Department of Plant Sciences associate professor and
 potato breeder

NDSU DATENSION

• Please complete the short online survey that will be emailed to you after today's webinar. It will take just a couple minutes!

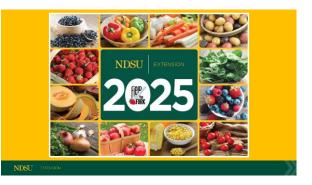
 Be sure to sign up for an opportunity to win a prize in the drawing. After submitting the survey, a form to fill out with your name/address will appear.

Acknowledgement: This project was supported by the U.S. Department of Agriculture's (USDA) Agricultural Marketing Service through SCB224-24.6. Its contents are solely the responsibility of the authors and do not necessarily represen the official vews of the USDA.

March 12

The Science Behind Indoor Plant Lighting

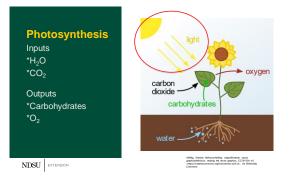
Esther McGinnis, NDSU Extension Horticulturist and Associate Professor



Nondiscrimination Statement

NDSU does not discriminate in its programs and activities on the basis of age, color, gender expression/identity, genetic information, marital status, national origin, participation in lawful offcampus activity, physical or mental disability, pregnancy, public assistance status, race, religion, sex, sexual orientation, spousal relationship to current employee, or veteran status, as applicable. Direct inquiries to Vice Provost, Title IX/ADA Coordinator, Old Main 100, 701-231-7708, ndsu.eoaa@ mdsu.edu. This publication will be made available in alternative formats for people with disabilities upon request, 701-231-7881.

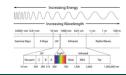
NDSU EXTENSION



 What do I need to know to buy a LED grow light?

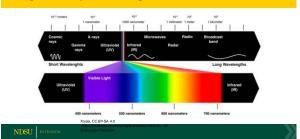
 SMD
 PPFD

 COB


 COB

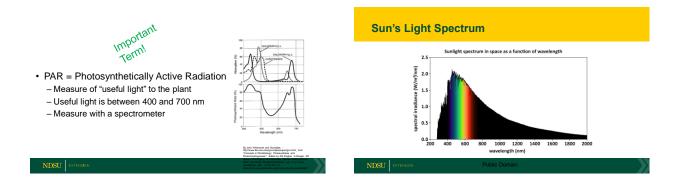
- Light acts like particles AND like waves

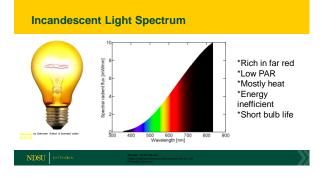
 Particles of light are called photons; quantity
 - We can see different wavelengths based on their color; quality



Three Aspects of Light

Light Quality--Wavelengths

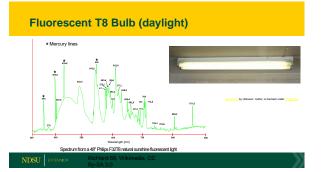



Plant Wavelengths

Nore energy				
Light	Wavelength (nm)	Function in Plants		
	100-400	Initiate plant defense responses		
Blue light	400-500	Photosynthesis (more efficient)		
Greenlight	500-600	Photosynthesis (less efficient)		
Red light	600-700	Photosynthesis (more efficient)		
Far red (barely visible)	700-800	Shade avoidance; a little helps plant growth		
Infrared	800-2500	Heat		
Thermal (longwave)	2500+	Heat		
s	PAR: photosynthetically active range is from 400 to 700 nm			

Wavelengths Affect Plant Growth

- Only blue light (400-500 nm): really short plants with small leaves and good roots
- Only red light (600-700 nm): taller plants with bigger leaves, not many branches; helps with flowering/fruiting
- Only far red (700-800 nm): stretched plants
- Blue + Red: compact and well-branched
 - Good root system
 - Helps plants with colored leaves color up



Fluorescent Lights v. Incandescent

- More energy efficient
- Less heat; can be placed close to plants
 Except CFLs
- · Bulbs last longer
- More PAR
- · Bulbs contain mercury; hazardous waste

NDSU EXTENS

Fluorescent Tubes Are Still Useful Plant Lights

- · Couple "daylight tubes"
- · OR mix one cool white and one warm white
- · Place them 3-6 inches above seedlings
- Make sure to raise as they grow
- Replace bulbs every year or two
- · Uses more energy than LED

NDSU EXTENSIO

LEDs: Light emitting diodes

- · Very energy efficient
- Less heat
- · Long bulb life
- \$\$\$
- · High intensity
- · Can be hung further away from the plants
- · Can emit a narrow spectrum of wavelengths

NDSU EXTENSION

Household White LED???

*Optimized for human eye; not PAR

First Generation LED Plant Lights

Blue and red lights

*OK if using in greenhouse as supplemental light *Hard on the eyes *Plants look black *Outdated

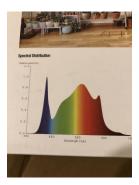
NDSU EXTENSION

NASA, CC-CC0-1.0

Next Generation LEDs: Warm White

3000K, 5000K, 660 nm, 730 nm High intensity Looks white from the side

Kelvin scale—less helpful


Correlated Color Temperature --- Measured in "Kelvins" (K) Never use degrees with the Kelvin scale or Lord Kelvin will punish you!

1800K	4000K	5500K	8000K	12000K	16000K
*More f	or humans				
*Approx	kimate color of	light			
*Lower	numbers = wa	rmer, redde	r light		

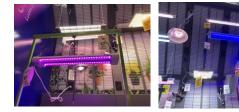
*Higher numbers = cooler, bluer light

NDSU EXTENS

SU EXTENSION Deb Krolls, CC SA 3.0

Surface Mounted Device (SMD LED)

 Chip Ship Coll


 Output

 <t

LED Tube Grow Lights -Plastic *No mercury *Look for "plug and play" bulbs if want to use fluorescent fixtures *Look for grow lights Flower/fruit Greens/seeds

NDSU EXTENSION

LIGHT QUANTITY/INTENSITY

NDSU EXTENSION

Plants Need Different Quantities of Light

- · Low light houseplants—lower amount
- · Quality seedlings need a moderately high amount
- · Mature fruiting plants (tomatoes and peppers) need

NDSU EXTENS

We Can Measure Light Quantity

- · Count the photons!
- Photosynthetic photon flux density (PPFD)

 Amount of PAR that lands on a square meter per second
 - Micromoles (µ) (of photons) per meter squared per second
 - mmol/m²/s

NDSU EXTENS

Phone Apps

*Photone *Less accurate than expensive light meters

NDSU EXTENSION

PPFD Estimates (Dr. Neil Mattson)

Outdoor

- Sunlight—2000 mmol/m²/s
- Shade—400 mmol/m²/s
- Cloudy winter day—50 mmol/m²/s

Indoors

Choosing Lighting

Supplemental Lighting

- Growing near window(s)
- Choice of light is not as crucial
- Okay to buy light in the \$25-50

- Sole Source Lighting

 Basement/lighting tent
 - Light choice is critical
 - Research light quantity range for your crop(s)

NDSU EXTENSION

Proximity to Plants Matters (Inverse square)

- At one foot: light gives off 200 mmol/m²/s
- At two feet: light gives off 50 mmol/m²/s
- · At three feet: light gives off 22 mmol/m²/s

NDSU EXTER

LIGHT DURATION

NDSU EXTENSION

Light Duration and Flowering

- · Photoperiod: number of hours of light per day
- · Some plants are photoperiodic: # hours of light can stimulate flowering
- Flowering - Short Day Plants: 8 hours of light/16 hours of darkness

NDSU

Light Duration (Photoperiod) Affects Total **Quantity of Light**

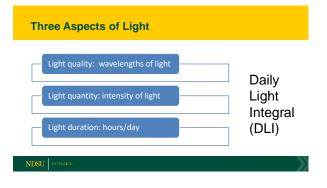
- · Don't want vegetable seedlings to flower
- · Most are day neutral
- · Long hours of lighting can offset low intensity lighting

Photoperiod + Light Quantity

- · Several T8 fluorescent tube lights four inches above your crop; may need to leave it on for 16-18 hours to get enough light
- · High output, expensive LED lamp-same quantity of light in 8 hours
- · Cheap LED-might need to leave the lamp on for 34 hours!

NDSU

In general ...

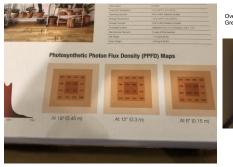

- · Have lighting on for 16 hours per day for vegetable starts
- · Plants need to rest
- · Lettuce and spinach are a little more sensitive (<14 hrs)
- Use a light timer

BRINGING IT HOME: DAILY LIGHT INTEGRAL

NDSU EXTENSION

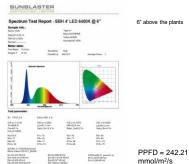
Daily Light Integral (DLI)

- · Takes into account all three factors of light
- Amount of useful light (PAR) delivered over a square meter (PPFD) per 24 hour day (photoperiod)
- DLI = PPFD x Hrs. x 0.0036
- DLI measurement --mol/m²/d

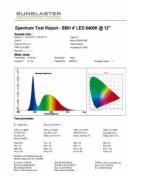

BUT HOW MUCH DLI DO COMMON PLANTS NEED?

NDSU EXTENSION

Plant	PPFD (mmol/m²/s)	DLI (mol/m²/d)
African violets	70-300	4-14
Basil	220-500	12-26
Cucumbers (fruit)	300-600	20-30
Cucumber (seedlings)	100-300	5-15
Lettuce (Butterhead)	250-350	14-16
Lemon tree	300-600	21-28
Peace lily	20-40	4-14
Peppers (fruit)	300-600	20-30
Peppers (seedling)	150-350	8-18
Other vegetable seedlings (early stage)	70-150	6-12
Succulents	500-2000	30-50
Tomatoes (fruit)	350-800	20-30
Tomatoes (seedlings)	150-350	8-18


DLI (mol/m²/day) for High Quality Plants

PPFD (mmol/m²/s)	4 hrs.	8 hrs.	12 hrs.	16 hrs.	
50 mmol/m ² /s	0.7	1.4	2.2	2.9	Ok for supplemental
100 mmol/m ² /s	1.4	2.9	4.3	5.8 (vegetable seedlings)	Great for
200 mmol/m ² /s	2.8	5.8 (vegetable seedlings)	8.6	11.6 (tomato seedlings)	seedlings
500 mmol/m²/s	7.0	14.5	21.5	29 (tomato to fruiting)	Fruiting
NDSU DATE	INSION				



Overkill for seedlings Great for succulents

12" above the plants

116.13 mmol/m²/s

Evaluate Plant Growth

- · Problems if not enough light
 - Seedlings may be leggy
 - Leaning towards the light
 - Plants may not flower or set fruit
- · Too close to the light
 - Scorched leaves
 - Bleached leaves
 - Abnormal leaf reddening
 - Excessively compact growth

Conclusions

- · What am I growing?
- Do I need supplemental lighting or sole source lighting?
- · What is my budget? (short-term v. long-term)
- · Research and choose lights that:
- optimize the right wavelengths (PAR)
- select light intensity (PPFD) appropriate for your plant material
- look up DLI and calculate number of hours of light necessary
- adjust based on plant responses